Test course

This course is designed to provide students with a foundational understanding of data science. Students will learn about the fundamentals of data analysis, statistical methods, and machine learning techniques. They will also gain experience using programming languages such as Python and R to analyze data and create visualizations. The course will cover various aspects of data science, including data collection and cleaning, exploratory data analysis, regression analysis, classification, and clustering.

Beginner 0(0 Ratings) English
+ View more
Course overview
View Document

The course will be divided into the following modules:

Module 1: Introduction to Data Science

  • Overview of data science and its applications
  • Key concepts in data science
  • Data types and data formats
  • Tools and software used in data science

Module 2: Data Collection and Cleaning

  • Data sources and formats
  • Techniques for cleaning and preprocessing data
  • Data wrangling using Python and R
  • Module 3: Exploratory Data Analysis

    • Descriptive statistics
    • Data visualization
    • Correlation and regression analysis

    Module 4: Statistical Methods

    • Probability distributions
    • Hypothesis testing
    • Confidence intervals

    Module 5: Machine Learning Techniques

    • Introduction to machine learning
    • Supervised and unsupervised learning
    • Regression analysis and classification
    • Clustering

    Module 6: Challenges in Data Science

    • Common challenges in data science, such as bias and missing data
    • Strategies for addressing these challenges
    • Ethical considerations in data science

    Module 7: Data Science Project

    • Students will work in teams to complete a data science project
    • Project will involve all aspects of data science covered in the course
    • Final project presentations and reports will be required

    Assessment: Assessment for this course will be based on the following components:

    • Assignments (30%)
    • Quizzes (20%)
    • Midterm Exam (20%)
    • Final Exam (30%)

    The final project will not be graded, but will be required for completion of the course.

    Textbook: The textbook for this course is "Python for Data Analysis" by Wes McKinney. Additional readings and resources will be provided throughout the course.

    Prerequisites: There are no formal prerequisites for this course, but basic knowledge of programming concepts and statistics would be helpful.

    <button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400" style="border-width: 0px; border-style: solid; border-color: rgb(217, 217, 227); --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored:0 0 transparent; --tw-blur: ; --tw-brightness: ; --tw-contrast: ; --tw-grayscale: ; --tw-hue-rotate: ; --tw-invert: ; --tw-saturate: ; --tw-sepia: ; --tw-drop-shadow: ; --tw-backdrop-blur: ; --tw-backdrop-brightness: ; --tw-backdrop-contrast: ; --tw-backdrop-grayscale: ; --tw-backdrop-hue-rotate: ; --tw-backdrop-invert: ; --tw-backdrop-opacity: ; --tw-backdrop-saturate: ; --tw-backdrop-sepia: ; font-size: 16px; font-weight: inherit; padding: 0.25rem; background-image: none; border-radius: 0.375rem;"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"></svg></button><button class="p-1 rounded-md hover:bg-gray-100 hover:text-gray-700 dark:text-gray-400 dark:hover:bg-gray-700 dark:hover:text-gray-200 disabled:dark:hover:text-gray-400" style="border-width: 0px; border-style: solid; border-color: rgb(217, 217, 227); --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored:0 0 transparent; --tw-blur: ; --tw-brightness: ; --tw-contrast: ; --tw-grayscale: ; --tw-hue-rotate: ; --tw-invert: ; --tw-saturate: ; --tw-sepia: ; --tw-drop-shadow: ; --tw-backdrop-blur: ; --tw-backdrop-brightness: ; --tw-backdrop-contrast: ; --tw-backdrop-grayscale: ; --tw-backdrop-hue-rotate: ; --tw-backdrop-invert: ; --tw-backdrop-opacity: ; --tw-backdrop-saturate: ; --tw-backdrop-sepia: ; font-size: 16px; font-weight: inherit; padding: 0.25rem; background-image: none; border-radius: 0.375rem;"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"></svg></button>
    <button class="cursor-pointer absolute right-6 bottom-[124px] md:bottom-[120px] z-10 rounded-full border border-gray-200 bg-gray-50 text-gray-600 dark:border-white/10 dark:bg-white/10 dark:text-gray-200" style="border-color: rgba(217,217,227,var(--tw-border-opacity)); --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored:0 0 transparent; --tw-blur: ; --tw-brightness: ; --tw-contrast: ; --tw-grayscale: ; --tw-hue-rotate: ; --tw-invert: ; --tw-saturate: ; --tw-sepia: ; --tw-drop-shadow: ; --tw-backdrop-blur: ; --tw-backdrop-brightness: ; --tw-backdrop-contrast: ; --tw-backdrop-grayscale: ; --tw-backdrop-hue-rotate: ; --tw-backdrop-invert: ; --tw-backdrop-opacity: ; --tw-backdrop-saturate: ; --tw-backdrop-sepia: ; font-size: 16px; font-weight: inherit; padding: 0px; background-image: none; position: absolute; right: 1.5rem; bottom: 120px; z-index: 10; border-radius: 9999px; --tw-border-opacity:1; --tw-bg-opacity:1; --tw-text-opacity:1;" fdprocessedid="8wjdbs"><svg stroke="currentColor" fill="none" stroke-width="2" viewBox="0 0 24 24" stroke-linecap="round" stroke-linejoin="round" class="h-4 w-4 m-1" height="1em" width="1em" xmlns="http://www.w3.org/2000/svg"></svg></button>
    <form class="stretch mx-2 flex flex-row gap-3 last:mb-2 md:mx-4 md:last:mb-6 lg:mx-auto lg:max-w-2xl xl:max-w-3xl" style="border: 0px solid rgb(217, 217, 227); --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored:0 0 transparent; --tw-blur: ; --tw-brightness: ; --tw-contrast: ; --tw-grayscale: ; --tw-hue-rotate: ; --tw-invert: ; --tw-saturate: ; --tw-sepia: ; --tw-drop-shadow: ; --tw-backdrop-blur: ; --tw-backdrop-brightness: ; --tw-backdrop-contrast: ; --tw-backdrop-grayscale: ; --tw-backdrop-hue-rotate: ; --tw-backdrop-invert: ; --tw-backdrop-opacity: ; --tw-backdrop-saturate: ; --tw-backdrop-sepia: ; margin-left: auto; margin-right: auto; display: flex; gap: 0.75rem; max-width: 48rem;">
    <button class="btn relative btn-neutral border-0 md:border" style="border-width: 1px; border-style: solid; border-color: rgba(0, 0, 0, 0.1); --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored:0 0 transparent; --tw-blur: ; --tw-brightness: ; --tw-contrast: ; --tw-grayscale: ; --tw-hue-rotate: ; --tw-invert: ; --tw-saturate: ; --tw-sepia: ; --tw-drop-shadow: ; --tw-backdrop-blur: ; --tw-backdrop-brightness: ; --tw-backdrop-contrast: ; --tw-backdrop-grayscale: ; --tw-backdrop-hue-rotate: ; --tw-backdrop-invert: ; --tw-backdrop-opacity: ; --tw-backdrop-saturate: ; --tw-backdrop-sepia: ; color: rgba(64,65,79,var(--tw-text-opacity)); font-weight: inherit; line-height: 1.25rem; padding: 0.5rem 0.75rem; background-image: none; align-items: center; border-radius: 0.25rem; display: inline-flex; pointer-events: auto; --tw-bg-opacity:1; --tw-text-opacity:1; position: relative;" fdprocessedid="hxfu6"></button>
    </form>

What will i learn?

  • Understand the principles and methodologies of data science.
  • Apply data analysis techniques using programming languages such as Python and R.
  • Create visualizations of data to communicate insights and findings.
  • Analyze and interpret data using statistical methods.
  • Build machine learning models to solve classification and regression problems.
Requirements
  • There are no formal prerequisites for this course, but basic knowledge of programming concepts and statistics would be helpful.
Curriculum for this course
0 Lessons 00:00:00 Hours
+ View more
Other related courses
About instructor

Anil Gupta

0 Reviews | 0 Students | 1 Courses
Student feedback
0
0 Reviews
  • (0)
  • (0)
  • (0)
  • (0)
  • (0)

Reviews

₹1
Includes: